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I. ВВЕДЕНИЕ

Полифторароматические соединения стали объектом пристального
внимания ученых в последние 10—15 лет, после того, как были найдены
удобные и доступные методы их получения. Накопленный к настоящему
времени материал по химии полифторароматических соединений позво-
'ляет сделать вывод о том, что реакции этих соединений с каждым из
основных типов реагентов — нуклеофильными '•2, электрофильными3,
карбенами4-9 открывают общие пути синтеза полифторированных
соединений принципиально новых структурных типов. В этом плане
радикальные реакции полифторароматических соединений, исследова-
ние которых интенсивно развивается в последние годы, дают яркий при-
мер влияния атомов фтора на характер образующихся продуктов и на
реакционную способность ароматических соединений.

Основное внимание в предлагаемом обзоре уделено реакциям поли-
фторароматических соединений с алкильными и арильными радикала-
ми. Кроме того, обсуждены реакции с некоторыми другими радикалами,
а также фотохимические и термические реакции, идущие по свободно-
радикальному механизму.

II. РЕАКЦИИ С АЛКИЛЬНЫМИ РАДИКАЛАМИ

В отличие от реакций гомолитического арилирования нефторирован-
ных ароматических соединений, широко освещенных в ряде обзоров и
монографий1 0·и, реакции радикального алкилирования обобщены не
были. С тем, чтобы в дальнейшем иметь возможность сопоставить дан- #
ные по действию алкильных радикалов на полифторароматические
соединения и на их нефторированные аналоги, целесообразно коротко
рассмотреть результаты изучения взаимодействия нефторированных
соединений с алкильными радикалами. Наиболее подробно изучены ре-
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акции ароматических соединений с метальным и трифторметильным
радикалами как в жидкой, так и в газовой фазах. Принятая схема,
рассмотренная на примере взаимодействия метильного радикала с аро-
матическими соединениями, включает на первой стадии присоединение
радикала с образованием σ-комплекса типа I:

(1)

(2)RH +

Предполагается, что прямой отрыв водорода от ароматического
кольца с образованием фенильного радикала не имеет места, так как в
продуктах реакции не обнаружены бифенилы12. Рассчитано также, что
отрыв водорода от σ-комплекса (I) (уравнение 2) энергетически выгод-
нее прямого отрыва водорода от ароматического кольца (64 и 100 ккал
соответственно) 13.

ТАБЛИЦА 1

Относительные скорости метилирования и фенилирования соединений типа СвН5Х
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• В скобках — данные работы".

Сопоставление относительных скоростей метилирования и арилиро-
вания бензола и его производных (табл. 1) показывает, что СН/ прояв-
ляет большую селективность, чем СвН,\ что может быть отнесено за счет
низкой реакционной способности образующегося промежуточного
σ-комплекса (I). Последнее обстоятельство вносит существенную раз-
ницу в дальнейшую судьбу σ-комплексов, образованных при присоеди-
нении алкильных или арильных радикалов к ароматическим соединени-
ям. σ-Комплексы присоединения алкильных радикалов накапливаются в
среде и исчезают, реагируя в паре, путем димеризации (уравнение (1))
или реагируют с радикалами среды, давая метилзамещенные бензола
(уравнение (2)) 1*· 1 5, тогда как σ-комплексы присоединения арильных
радикалов преимущественно претерпевают диспропорционирование с
образованием соответствующих биарилов 10.

Продукты метилирования в реакциях ароматических соединений с
источниками метальных радикалов удается идентифицировать, тогда
как образование димеров типа (II) в большинстве работ лишь предпо-
лагается на основании общих соображений12· " · 1 8 . Только в одной рабо-
те1 2 сообщается об идентификации в смеси продуктов реакции бензола
с CHs' путем ГЖХ 2,2'-, 2,4'- и 4,4'-диметилбифенилов, которые могут
образоваться при дегидрировании соответствующих димеров. Другие
алкильные радикалы, такие как С2Н5\ изо-С3Н7" и «-С3Н7\ проявляют
по отношению к ароматическим соединениям реакционную способность,
аналогичную метильному радикалу, о чем можно судить по одинаково-
му соотношению изомерных алкилпроизводных в реакции СвН5С1 с СН5*
и СгНь"19, и по данным об относительных скоростях присоединения к
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ароматическим соединениям этильного20, изопропильного21 и я-бутиль-
ного22 радикалов.

Изучение реакций трифторметильного радикала с ароматическими
соединениями показало, что, как и в случае взаимодействия с метальным
радикалом, различия между реакцией в газовой и жидкой фазе не су-
щественны 23, и что основным процессом является присоединение по
кольцу24, " . При этом оказывается, что CF3' более реакционноспособен,
чем СН,\ что, по всей вероятности, связано с его высокой электрофиль-
ностью (например, относительные скорости присоединения СН3' и CF3°
к бензолу, по сравнению с их присоединением к изо-октану, равны 0,4
и 7,1 соответственно) 26. Значения относительных скоростей присоеди-
нения CF3 ' к замещенным бензолам (табл. 2) также свидетельствуют
об электрофильном характере трифторметильного радикала.

ТАБЛИЦА 2

Относительные скорости kQTH присоединения трифторметильного радикала к замещенным

бензолам С6Н6Х
27
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* В скобках приведены данные 3 8 .
* · Данные работы2 9.

Как видно из данных табл. 2, ароматическое кольцо активируется в
реакции присоединения трифторметильного радикала донорами электро-
нов и дезактивируется акцепторами. Для соединений С6Н5На1 присоеди-
нение затрудняется в ряду I > B r > C l > F . Дезактивирующий эффект
электроноакцепторных заместителей, таких, как CF3 и СС13 оказался
слабее ожидаемого. Влияние других заместителей качественно подобно
наблюдаемому в реакциях замещенных бензолов с электрофильными
агентами, и отличается от влияния этих заместителей в реакциях с ме-
тильным и фенильным радикалами. Однако при этом в реакциях аро-
матических соединений с трифторметильным радикалом сохраняется
отмеченная для всех гомолитических реакций намного меньшая, по срав-
нению с гетеролитическими реакциями, зависимость скорости реакции
присоединения от характера заместителя в СвН5Х "•15·3"·

Принципиальных различий в поведении других фторсодержащих ал-
кильных радикалов в реакциях с ароматическими соединениями не на-
блюдается " .

Интересное наблюдение было сделано при изучении взаимодействия
CFj' и C2F5 ' с ароматическими соединениями при разных температурах.
Если при 65° присоединение трифторметильного радикала к бензолу и в
газовой, и в жидкой фазе необратимо, то при 140—150°32·33, а для пер-
фторэтильного радикала при 110°31, оно становится обратимым.

+ CFj

Переходя к рассмотрению реакций полифторароматических соедине-
ний с алкильными радикалами, отметим прежде всего значительное по-
нижение скорости присоединения трифторметильного радикала к соеди-
нениям ряда CeHn F e _ n (п = 0 — 6) по мере увеличения числа атомов
фтора (табл. 3).
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ТАБЛИЦА 3

Аррениусовские параметры * реакций присоединения
трифторметильного радикала к ароматическим соединениям2 7
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• В основе кинетического метода лежит определение уменьшения вы-
хода продукта рекомбинации радикалов по отношению к внутреннему стан-
дарту (СО в случае генерирования трифторметильного радикала из 1екса-
фторацетона) при добавлении к реакционной смеси ароматического субстрата,
способного присоединять радикал.

** *ι — константа скорости присоединения CFj к ароматическому сое-
динению; fc2 — константа скорости димеризации трифторметильных радика-
лов.

При теоретическом рассмотрении присоединения радикалов к арома-
тическим соединениям принято считать, что изменения в константах
скоростей вызваны в основном изменением энергий активации реакций.
Объяснение дезактивации ароматического кольца атомами фтора в тер-
минах эффектов электронного отталкивания или дипольного влияния
среды также предсказывает изменения в энергиях активации. Однако
данные табл. 3 показывают, что энергии активации практически очень
близки для всех замещенных бензолов, тогда как энтропия активации
(Л-фактор) существенно зависит от числа и характера заместителей.

Очевидно, что замещение атомов водорода на фтор в реакционном
центре ароматического соединения может воздействовать как на энер-
гию, так и на энтропию активации радикального присоединения.
Шварц34 приводит данные о том, что для гексафторбензола и бензола
энтропии активации очень мало отличаются, тогда как по данным Вайт-
л а " , для полифторароматических соединений Л-фактор примерно в
10 раз ниже, чем для производных бензола, не содержащих атомов фто-
ра. Обратимость присоединения трифторметильного радикала к арома-
тическим соединениям при высоких температурах (150° для бензола
и 180° для гексафторбензола) 34 вносит некоторую ненадежность и в те,
и в другие результаты. Тем не менее, такие факты, как близость отно-
шения констант скорости присоединения CF3 ' к С6Н6 и C6Fe, полученных
Шварцем и Вайтлом в интервале температуру 24 — 80° (&C6HS/&C6F<,—20),
а также наблюдаемое уменьшение Л-фактора для присоединения три-
фторметильного радикала к ряду других полифторзамещенных бензо-
лов (табл. 3), позволяют считать, что наблюдаемое Вайтлом изменение
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энтропии активации больше, чем возможные экспериментальные ошиб-
ки, и потому более достоверно, чем данные Шварца. Понижение энтро-
пии активации присоединения трифторметильного радикала, имеющее
место при наличии заместителей в реакционном центре, может быть
результатом частичного ограничения вращения трифторметильной груп-
пы вокруг оси С — CF3 в переходном состоянии.

Для соединений типа C6F5X, с Χ—Η в качестве стандартного заме-
стителя, наблюдаются те же самые эффекты заместителей в реакциях
присоединения трифторметильного радикала (табл. 4), что и для про-
изводных бензола С6Н5Х (см. табл. 2).

ТАБЛИЦА 4

Относительные скорости k0TfJ присоединения трифторметильного
радикала к соединениям типа CeFBX27
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сн,
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* Скорость рассчитана по соотношениям ItQ fj cl^C Η ~ "·065" и

Интересны наблюдения пути и легкости отрыва водорода от арома-
тических фторсодержащих соединений трифторметильным радикалом " .
По мере накопления атомов фтора в молекуле C eHnF s_n, отщепление
водорода становится все более трудным, но в тоже время затрудняется
и присоединение CF,', что согласуется с высказанным ранее предполо-
жением о том, что отщепление водорода в реакциях ароматических со-
единений с алкильными радикалами скорее всего происходит из σ-комп-
лекса присоединения этих радикалов, а не непосредственно из кольца.
При наличии в бензольном кольце такого заместителя, как СНа-группа,
водород из нее отрывается намного труднее в CeF5CHs, чем в CeHsCHs,
что может быть обусловлено большей прочностью связи С — Η в пен-
тафтортолуоле.

Для таких производных бензола, как С6Н5Вг и CeFsBr. в реакциях
с трифторметильным радикалом наблюдается отрыв атома брома, о
чем судят по образованию CF3Br. При этом оказывается, что из пента-
фторбромбензола бром отщепляется примерно в 6 раз легче, чем из
бромбензола, однако рассчитать константы скоростей этих реакций не
удается, так как существует два альтернативных механизма отрыва
брома: 1) непосредственно из ароматического кольца и 2) из промежу-
точного σ-комплекса, в котором CF3* присоединен к атому углерода,
связанному с бромом. Наблюдения, сделанные авторами работы27,
позволяют склониться в сторону второго механизма. Во-первых, и для
CeF5Br, и для СбН5Вг скорость образования CF3Br заметно не изменяется
с изменением температуры; во-вторых, энергия активации для обеих
реакций оказалась менее 2 ккал/моль, тогда как для отрыва водорода
она равна ~ 5 ккал/моль. Вопреки низкой энергии активации, отщепле-
ние брома из С6Н5Вг идет много медленнее, чем водорода, что, по-види-
мому, определяется стерическими факторами, которые при отрыве бро-
ма, находящегося в σ-комплексе в геминальном положении с CF3-rpyn-
пой, могут играть более важную роль, чем при отщеплении водорода из
аналогичного σ-комплекса.

В отличие от реакций CeHsBr и CeF5Br, при взаимодействии трифтор-
метильного радикала с СвН5С1 и CeF5Cl не наблюдается заметного от-
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щепления атома хлора даже при ПО—120°29. Рассчитанная энергия
активации отщепления атома хлора равна ~ 13 ккал/моль. В то же вре-
мя иод от С„Н51 и CeF5I отрывается трифторметильным радикалом чрез-
вычайно быстро, причем от пентафториодбензола он отрывается пример-
но в 4 раза быстрее, чем от иодбензола.

При взаимодействии CF3 ' с пентафторбензальдегидом35 наблюдается
отрыв атома водорода с образованием трифторметана и пентафторбен-
зоильного радикала, который, рекомбинируя с CFS\ дает октафтораце-
тофенон:

• hv

CeF6CHO + CFS -4- C6F6CO· + CF3H

CeF5CO- + CF3 -» CeF5COCF3

Энергия активации отрыва атома водорода от пентафторбензальдегида
выше, чем для бензальдегида (8,6 и 4,6 ккал/моль соответственно), но вы-
ход октафторацетофенона при этом оказывается существенно выше выхо-
да ацетофенона в соответствующей реакции бензальдегида. Последнее
обстоятельство, по мнению авторов 35, может быть результатом низкой
стабильности нефторированного бензоильного радикала (энергия диссо-
циации связи СвН5 — СО только 28 ккал/моль), который легко диссоци-
ирует с образованием СвН5* и СО. С другой стороны, возможно, что при-
чиной высокого выхода октафторацетофенона является высокая реак-
ционная способность пентафторбензоильного радикала (ср. реакцию
CeF5I с Ni(CO)4, стр. 681), который до диссоциации с образованием C6F5 '
и СО вступает в реакцию с трифторметильным радикалом.

Представляет интерес сравнить результаты изучения взаимодействия
бензола и гексафтор бензол а с дифторхлорметильным радикалом, гене-
рируемым из 1,3-дихлортетрафторацетона при фотолизе3 6. Обнаружен-
ные авторами существенные различия в зависимости скорости образова-
ния продуктов присоединения CF2C1' к С6Н6 и C6Fe от температуры были
интерпретированы в терминах различной стабильности соответствующих
σ-комплексов (100° для C6H6CF2Cr и 250° для C 6F 6CF 2Cr).

То обстоятельство, что ни в одной из реакций полифторароматиче-
ских соединений со фторсодержащими алкильными радикалами не наб-
людалось отщепления атомов фтора, может служить указанием на то, что
основным путем превращения σ-комплексов присоединения этих радика-
лов к полифторароматическим соединениям является их димеризация.
Ранее мы уже отмечали, что в подавляющем большинстве изученных ре-
акций как с нефторированными, так и со фторированными реагентами
выделить димерные продукты не удавалось и выводы относительно ме-
ханизма превращения σ-комплексов присоединения алкильных радика-
лов к фторированным и нефторированным ароматическим соединениям
основывались на кинетических данных. Недавно 37 при изучении взаимо-
действия гексафторбензола с перфторэтильным радикалом, генерирован-
ным из перекиси перфторпропионила, были выделены в качестве основ-
ных продуктов реакции изомерные соединения (IV)—димеры σ-комп-
лекса присоединения C2F5* к C eF e (III):

(CaF6COO)2 Д. 2C2F' + 2СО2

7 Успехи химия, J6 4
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Заслуживает внимания различие в поведении бензола и гексафтор-
бензола при взаимодействии с нитрометаном при 550°3S. Основным про-
дуктом реакции с бензолом является бифенил, а из остальных 80% со-
ставляют азотсодержащие соединения (анилин, N-метиланилин) 39, тог-
да как в реакции с C6F6 образуются главным образом пентафтортолуол
и пентафторфенол, соотношение которых меняется в зависимости от моль-
ного соотношения реагентов (табл. 5).

ТАБЛИЦА В

Соотношение продуктов реакции C eF6 с CH3NO2 (% по ГЖХ, C6Fe 1 моль)

Продукты
реакции

C e F 5 C H 3

C e F 6 OH
CeF5OCH3

Нвтрометан (число молей)

1

37,5
33,0
5,9

0,1

60,0
3,0

12,7

Продукты реакции

C 6F 6CHO
Q2F10

Неизвестные продукты

Нитрометан (число молей)

1

6,6

10,2

0,1

4,6
2,9

16,8

Обнаруженное различие в продуктах реакции нитрометана с бензо-
лом и гексафторбензолом может быть связано с некоторым нуклеофиль-
ным характером метального радикала, что делает его атаку на C6F6, ко-
торый чувствителен к нуклеофильным агентам 2, предпочтительной. Воз-
можно, степень такого предпочтения отражает различие в энергиях дис-
социации связей £>(CeF5—СН3)—£>(СвН5—СН3) =25 /скал/моль™. Для
образования основных продуктов реакции CH3NO2 с C6F6 предлагается
следующая схема. Нитрометан при высокой температуре разлагается на
два радикала:

CH 3 NO 2 NO'

Метильный радикал присоединяется к гексафторбензолу с образованием
σ-комплекса, от которого атом фтора отрывается радикалом NO2'

сн; + NO,F

F F

По-видимому, метильный радикал настолько быстро реагирует с гекса-
фторбензолом, что не успевает отрывать водород от нитрометана, как это
имеет место в реакции с бензолом. Различна и роль NO2' в обеих реакци-
ях. От бензола этот радикал отрывает водород, давая фенильный ради-
кал, отвечающий за образование бифенила при фенилировании бензола
или при димеризации. От C6F6 фтор отрывается, вероятно, лишь в незна-
чительной степени, так как образуются весьма малые количества дека-
фторбифенила. Скорее всего радикалу NO2' в реакции с CeFe принадле-
жит основная роль в образовании пентафторфенола:

отПентафторфеноксильный радикал отрывает, по-видимому, водород
нитрометана, давая пентафторфенол.

Альтернативный механизм образования пентафторфенола через пен-
тафторнитробензол или, возможно, через пентафторфенилнитрит непо-
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средственно (не включающий предварительной диссоциации нитромета-
на, как это имеет место при образовании фенолов из ароматических нит-
росоединений при высокой температуре41), по-видимому, исключен из-
за отсутствия в продуктах реакции CH3F.

Пентафторанизол при взаимодействии гексафторбензола с нитроме-
таном может получаться в результате атаки C6F6 метоксильным радика-
лом, образующимся при нитро-нитритной перегруппировке или рекомби-
нации— диссоциации нитрометана:

CHaNO, -» CH3ONO -> СН3О- + NO·

CH' + NO

CH3ONO ·
/·/

Предпочтительное отщепление фтора по сравнению с водородом в ре-
акциях с метильным радикалом, генерированным из нитрометана при вы-
соких температурах, хорошо видно на примере взаимодействия с нитро-
метаном я-дифторбензола 38. Основным продуктом этой реакции являет-
ся фторфенол, а отношение выхода продуктов отрыва атомов фтора и
атомов водорода равно 33 : 1.

При изучении реакционной способности полифторированных непре-
дельных соединений по отношению к метильному радикалу, генерирован-
ному из перекиси ацетила 42, также была отмечена более высокая реак-
ционная способность гексафторбензола по сравнению с бензолом
(табл. 6).

ТАБЛИЦА 6

Сродство непредельных соединений и их фторированных

Соединение

аналогов

с,н.

0,4>5

к метильному радикалу42

СН,= СН—СН=СН,

290043

C.F,

3,1

CF,=CF—CF=CF,

900

• ft, — константа скорости присоединения CH j ; к, — константа скорос-
ти отрыва водорода от растворителя CHj .

Рассмотренные реакции алкильных радикалов с полифтораромати-
ческими соединениями позволяют выявить некоторые характерные осо-
бенности поведения этих соединений. Прежде всего надо отметить повы-
шенную реакционную способность полифторароматических соединений
по отношению к нуклеофильным радикалам. Не менее важным является
вывод о повышенной стабильности фторсодержащих радикальных σ-
комплексов, который вытекает из сопоставления температур диссоциации
радикальных σ-комплексов присоединения алкильных радикалов к бен-
золу и гексафторбензолу.

III. РЕАКЦИИ С АРИЛЬНЫМИ РАДИКАЛАМИ

Материал предыдущей главы показывает, что для реакций большого
набора полифторароматических соединений с алкильными радикалами
имеющаяся информация отражает, главным образом, кинетику процес-
сов и почти нет данных о препаративных возможностях реакции. В рабо-
тах по взаимодействию полифторароматических соединений с арильными
радикалами имеет место более удачное сочетание исследований в этих
двух направлениях. Это позволило выявить как количественные законо-
мерности поведения полифторароматических соединений в этих реакци-
ях, так и интересные синтетические превращения.
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В качестве источников арильных радикалов в изученных реакциях
использованы преимущественно перекиси ароилов, поскольку было обна-
ружено, что гексафторбензол не реагирует, например, с пентафторфе-
нильными-радикалами, генерированными из C 6F 5NHNH 2" в присутствии
окислителей, или из C6F5I при фотолизе ", а также с таким источником
CeF5', каким по аналогии с нефторированным соединением мог оказаться
C eF5N(NO)COCH3

4 e.
При разложении перекиси пентафторбензоила в гексафторбензоле

при 80° в качестве основного продукта реакции (60%) образуется пер-
фтор-4,4'-бмс-(бензоилокси)-1,Г, 4,4'-тетрагидродифенил (VI) —продукт
димеризации σ-комплекса присоединения пентафторбензоилоксирадика-
л а к С 6 Р 6 ( У ) 4 7 · 4 8 :

(C 6 F 5 COO) 2

C6F5COO* + C 6F (

2 C 6F 5COO*

2 (V)
CBF5OC W F ' W 4)COC6F5

Кроме соединения (VI), образуется — 3—5% перфторфенилового эфира
бензойной кислоты (VII) и 5—7% декафтордифенила (VIII). Английским
химикам 4 9 · 5 0 не удалось в аналогичной реакции выделить каких-либо
иных продуктов, кроме соединений (VII) и (VIII).

Главными особенностями этой реакции являются практическое отсут-
ствие продуктов гомолитического замещения и преимущественное учас-
тие в реакции пентафторбензоилоксильных радикалов. Напомним, что в
тех же условиях нефторированные реагенты дают в основном дифенилы.
Соединения (VII) и (VIII), образующиеся в незначительных количествах,
можно рассматривать либо как результат превращения радикалов, гене-
рированных из перекиси пентафторбензоила (например, димеризация
C6F5 ' или рекомбинация C6F5' и CeF5COO"), либо как продукты взаимо-
действия этих радикалов с гексафторбензолом.

Взаимодействие октафторнафталина (ΟΦΗ) с перекисью пентафтор-
бензоила приводит к результатам, аналогичным реакции гексафторбен-
зола. Основным продуктом при 85° (ацетонитрил) является димер (X)
σ-комплекса присоединения пентафторбензоилокси-радикала в I-положе-
ние ΟΦΗ (IX) " :

(C 6 F 5 COO) 2

OCOC6F5
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С нефторированной перекисью бензоила ΟΦΗ в тех же условиях51

дает, вероятно, смесь димеров (XI), (XII) и (XIII):

(XI) (XII)

Участие в этой реакции как бензоилоксильного радикала, так и фе-
нильного, в отличие от реакций с перекисью пентафторбензоила, говорит
о существенном влиянии, которое оказывает введение атомов фтора в
молекулу перекиси на характер ее разложения (этот вопрос будет об-
сужден позднее).

Исключительное участие пентафторфенильного радикала в реакции
CeF6 с (C6F5COO)2 наблюдается только при высоких температурах. Так,
при 200° образуется смесь изомерных димеров σ-комплекса присоедине-
ния пентафторфенильного радикала к гексафторбензолу48. Строение этих
димеров, подтвержденное спектральными характеристиками и дефтори-
рованием в перфтор-ж, ж'-кватерфенил, свидетельствует о том, что в ре-
акции, по-видимому, имеет место димеризация σ-комплексов (XV), обра-
зующихся в результате миграции атома фтора в первоначальном σ-комп-
лексе типа (XIV):

C 6 F 6

Движущей силой миграции атома фтора в σ-комплексе (XIV) является,
вероятно, значительное увеличение стабильности перегруппированного
σ-комплекса (XV) за счет появления возможности участия пентафтор-
фенильного кольца в делокализации неспаренного электрона.

Интересно, что повышение температуры в реакции перекиси пента-
фторбензоила с ΟΦΗ не приводит к образованию продуктов с участием
пентафторфенильного радикала. Уже при 120° эта реакция идет по совер-
шенно необычному пути65, приводя к образованию смеси продуктов, в ко-
торой преобладает перфтор-2-(нафтокси-Г)нафтохинон-1,4 (XXI):
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о
0,012 (XX) 0,258 (XXI)

Образование производных нафтохинона (XIX), (XX) и (XXI), не имею-
щее аналогий в известных реакциях перекисей ароилов с нафталином и
его производными, связывают с протеканием следующих превращений:

-*• (XVII)

- C 6 F 5 C O F

(XXII)
C e F 3 C00"

COC6F5 J

(XXII)

- C 6 F 5 C O F
(XIX)

(XXII)

(XIX)
*- (XXI)

C 6 F 5 C O O '

*- (xx)

Радикальный σ-комплекс (IX) может, с одной стороны, терять атом фто-
ра и превращаться в типичные продукты гемолитического замещения —
перфторбензоилоксинафталины, а, с другой стороны, отщепляя фторан-
гидрид пентафторбензойной кислоты (XVI), давать новый радикал —
гептафторнафтоксильный (XXII), отвечающий за все дальнейшие прев-
ращения, приводящие к образованию соединений (XIX), (XX) и (XXI).
Такой путь стабилизации σ-комплекса (IX) обусловлен, вероятно, нали-
чием в геминальном узле атома фтора и бензоилокси-группы, что подт-
верждает образование соединений (XIX) и (XXI) при взаимодействии
ΟΦΗ с перекисью бензоила при 85° в отсутствие инертного растворите-
ля 53. Производные гексафторнафтохинона образуются в этой реакции
наряду с продуктами гемолитического замещения и превращения пере-
киси бензоила без участия фторированного субстрата (табл. 7).
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Как видно из данных табл. 7, изменение температуры реакции лишь
незначительно сказывается на качественном составе продуктов реакции,
но заметно влияет на их количественное соотношение. С повышением
температуры увеличивается выход фенилгептафторнафталинов, анало-
гично тому, что наблюдается при взаимодействии нафталина с перекисью
бензоила'4. Соотношение изомеров при изменении температуры остается
практически неизменным и указывает на большую чувствительность
α-положения молекулы ΟΦΗ к радикальной атаке, что согласуется с
расчетом энергий радикальной локализации в ΟΦΗ.

ТАБЛИЦА 7

Взаимодействие перекиси бензоила с октафторнафталином
(выходы в молях на моть перекиси, соотношение

перекись : ΟΦΗ = 1 :4,30 час)

Соединение

1 -Бензоилоксигептафторнафталин
2-Бензоилоксигептафторнафталин
1 -Фенилгептафторнафталин
2-Фенилгептафторнафталин
3,5,6,7,8-Пентафтор-2чгептафтор-

нафтокси-1')-нафтохинэн-1,4 (XXI)
Гексафторнафтохинон-1,4
Фторангидрид бензойной кислоты
Бифенил
Фенилбензоат

Температура

\
85° 1

0,045
0,037
0,104
0,031

0,056
0,022
0,515
0,051
0,566

реакции

ПО·

0,019
0,012
0,287
0,120

0,019
0,018

—
0,094
0,048

Весьма примечательно, что в реакции ΟΦΗ с (СвН5СОО)2 имеет мес-
то гемолитическое замещение атома фтора, которое является при этом
преимущественным процессом. Это может означать, что отсутствие про-
дуктов гомолитического замещения атомов фтора в реакциях ΟΦΗ и
C eF e с (CeF5COO)2 связано не только с высокой прочностью связи С—F
в исходных полифторароматических соединениях (D(C eF 5—F) =
= 140 /скал55; D(C eH5—Η) = 102 ккал 5 β ) , но и с природой радикала.

С образованием продуктов гомолитического замещения реагирует,
например, гексафторбензол с (C 6H 5COO) 2

5 7- 6 1 и некоторыми ее замещен-
ными62. Высокие выходы (60—80%) соответствующих пентафторбифе-
нилов получены в реакциях с самой перекисью бензоила и ее 3-метилпро-
изводным, а при введении в молекулу перекиси электроноакцепторных
заместителей (3-С1, 3-Br, 4-NO2) выходы продуктов арилирования замет-
но понижаются, особенно в случае 1МО2-замещенной перекиси. Такое на-
правление реакции послужило Вильямсу62 основанием для заключения
о том, что схема арилирования полифторароматических соединений по-
добна известной схеме арилирования нефторированных ароматических со-
единений и включает образование биарилов или путем диспропорциони-
рования соответствующих σ-комплексов, или снятием с них атома фтора
любым радикалом, присутствующим в смеси.

Однако детальное изучение кинетики и продуктов реакции гексафтор-
бензола с перекисью бензоила привело к отказу от диспропорционирова-
ния как пути образования биарилов и к постулированию для этой реак-
ции нового механизма, в основе которого лежит участие бензойной кис-
лоты в качестве дефторирующего агента. Схема реакции, которая вклю-
чает также стадии, общие с реакциями нефторированных соединений,
приведена ниже5 9"6 1 (на схеме подчеркнуты соединения, которые были
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выделены из продуктов этой реакции) :

(СвН6СОО)2 -> 2СвН5СОО-

С6Н6СОО· - » J

C6F (5)

(6)

(7)

(8)

F F

σΗ + (CeH5COO)2 -* o-FCeH«CeF6 -f C6H6COOH + CeH5COO·

(XXIII)

" + (CeH6COO)a -* σ ρ — OCOCeHs + CeH6COO·

+ С6НБСООН -» C6H6C6F6 + HF + C6H5COO·

C,H. + CeH5COOH -* C6He + C8H5COO·

(3)

(4)

(9)

(10)

(11)

(12)

= ς чс„н5

C,H6

σ Ρ , σ,;

F F

HF + o F — OCOCeH5 -> C6H5COOH + σΡ - F

σΗ + CeH5COO· -+ o-FCeH4CeF6 -f CeH0COOH

' C6H5COO· -> σρ - OCOC6HS

(13)

(14)

(15)

(16)

(17)

Первые стадии этой схемы — (3) и (4) хорошо известны и не требу-
ют каких-либо пояснений. Они, как и последующее присоединение ради-
калов к субстрату (уравнения (5) и (6)), аналогичны стадиям взаимо-
действия перекисей ароилов с другими ароматическими системами. Ста-
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дия перегруппировки первоначально образующегося σ-комплекса (σ*')
с миграцией атома фтора в незамещенное кольцо (7) и последующая ре-
акция с перекисью бензоила (9) перегруппированного σ-комплекса (σΗ")
наиболее просто объясняют образование в этой реакции небольших ко-
личеств 2,2', 3,4, 5,6-гексафторбифенила (XXIII) и бензойной кислоты.
Образование соединения (XXIII) наблюдалось также в высокотемпера-
турной (600°) реакции гексафторбензола с нитробензолом (данные масс-
спектра) "•63, для которой предполагается радикальный механизм.

Стадии (9) и (10) отражают вклад в реакцию индуцированного раз-
ложения перекиси бензоила, что вытекает и из анализа кинетических па-
раметров реакции " . Перегруппировка (8) σ-комплекса (σ/) с миграци-
ей атома фтора в соседнее положение (1,2-сдвиг), конкурирующая с пе-
регруппировкой (7) в σ-комплекс (σΗ*), осуществляется, по-видимому, в
большей степени, о чем можно судить по выходам продуктов димериза-
ции с участием перегруппированного σ-комплекса (a F ") 59.

Дефторирование σ-комплекса (σ/) с участием бензойной кислоты
(уравнение (11)) —одна из основных стадий реакции. Она ведет к обра-
зованию пентафторбифенила и является путем регенерации бензоил-
оксильного радикала и источником HF. Отсутствие такого эффективного
дефторирующего агента, как бензойная кислота является, по-видимому,
причиной низких выходов пентафторбифенила в реакциях гексафторбен-
зола с другими источниками фенильного радикала, такими как фенил-
азотрифенилметанв4 и СвН5Ы = гЮС5Нн65. Важную роль, которая при-
надлежит бензойной кислоте, демонстрирует увеличение выхода пента-
фторбифенила при проведении реакции разложения фенилазотрифенил-
метана в гексафторбензоле в присутствии бензойной кислоты64.

Предложенная схема взаимодействия гексафторбензола с перекисью
бензоила включает несколько путей генерирования бензойной кислоты.
Кроме уже упомянутой стадии (9), заслуживает внимания реакция (15)
и в меньшей степени— (16). Требуемые количества эфиров могут обра-
зовываться при дальнейших реакциях σ-комплекса присоединения бен-
зоилоксильного радикала к гексафторбензолу (уравнение (5)) или по ре-
акции (10) и (17). Так как в продуктах реакции отсутствует пентафтор-
фенилбензоат, образования которого можно ожидать, если имеет место
ароилоксилирование субстрата, инициируемое реакцией (5), то вероят-
нее всего эфиры образуются при радикал-радикальных реакциях. Наибо-
лее существенный вклад при этом принадлежит, по-видимому, эфиру
σΡ—ОСОСвН5, образование которого включает рекомбинацию двух ра-
дикалов, присутствующих в высокой стационарной концентрации.

Интересно, что сочетание стадий (10), (11) и (15) в конечном счете
приводит к образованию пентафторбифенила и гептафтордигидробифе-
нилов*, то есть к тем же продуктам, которые может давать и диспропор-
ционирование σ-комплекса (σΡ ').

Отказ от диспропорционирования, как одной из стадий процесса, про-
диктован следующими соображениями. Диспропорционирование являет-
ся одностадийной реакцией и требует, чтобы радикал-радикальные ком-
бинации, дающие димеры, не были преимущественными процессами. Но
так как кинетически димеризация и диспропорционирование эквивалентны
(скорость равна k- [σ/] 2), то наиболее вероятным будет процесс с более

* Гептафтордигидробифенилы не были выделены, но было высказано предположе-
ние о том, что они превращаются в пентафторбифенил в процессе обработки продуктов
реакции, так как было показано, что перегонка смеси продуктов реакции в жестких усло-
виях (3007760 мм рт. ст. вместо 100715 мм рт. ст.) приводит к увеличению выхода пен-
тафторбифенила почти в полтора раза и к такому же уменьшению выхода неидектифици-
рованного смолистого остатка 66.
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низкой энергией активации, каким является димеризация, исключающая
отщепление атома фтора. Удельный вес процессов димеризации (уравне-
ния (13) и (14)) меняется в зависимости от условий реакции, и выходы
димеров колеблются от 3 до 50% 59· Образование при дефторировании
смеси димеров соединений (XXIV) и (XXV) — октафторкватерфенилов —
подтверждает перегруппировку первоначально образующегося σ-комп-
лекса (σ/) в σ-комплекс (CTF'') С 1,2-миграцией атома фтора59.

(XXIV)

Результаты взаимодействия перекиси бензоила с замещенными по-
лифторароматическими соединениями представлены в табл. 8, в которой
для сравнения приведены также данные для некоторых нефторированных
соединений.

ТАБЛИЦА 8

Соотношение изомеров, образующихся при фенилировании
ароматических соединений при 80° (% по ГЖХ)

Соединение
Изомерный состав продуктов фенилирования

2- 4-

CeF6Cl«« 44,1 35,0 20,9
CeH sCl« 50,1 31,6 18,3
QF6Br * " · β 8 43,6(45,0) 39,0(36,0) 17,4(14,0)
CeH6Bre» 49,3 33,3 17,4
C e F 5 CF 3

e 8 5,υ 71,0 24,0
C 6 F 6 H**«s 15,0 45,0 11,0
C5F5N«6 47,7 22,1 30,3
C5H5№° 54,0 32,0 14,0

• В скобках данные работы", по которым образуется также -~5% про-
дукта замещения атома брома.

· · Отмечено образование 29% продукта замещения атома водорода.

Переходное состояние при арилировании простых производных бен-
зола (С6Н5Х) по общему мнению имеет структуру, промежуточную меж-
ду основным состоянием и σ-комплексом типа (XXVI).

/Аг

(XXVI)

При этом считается, что имеет место делокализация неспаренного элект-
рона по всему кольцу, включая и заместитель. Такая делокализация с
участием заместителя в значительной мере определяет наблюдаемую
ориентацию замещения при гомолитическом арилировании. В полифтор-
ароматических системах (C6F5X) имеется выбор между структурами, в
которых заместитель, участвующий в делокализации — X или F, что мо-
жет приводить к различиям в изомерном составе продуктов арилирова-
ния C6F5X и С6Н5Х.

Распределение изомерных бифенилов в реакциях перекиси бензоила
с хлор- и бромпентафторбензолами аналогично картине, наблюдаемой в
нефторированном ряду, что может быть результатом близкой эффектив-
лости атомов хлора, брома и фтора при делокализации неспаренного
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электрона в соответствующих σ-комплексах. Изомерный состав продук-
тов фенилирования пентафторбензола показывает, что наиболее легко
идет замещение в 1- и 3-положениях, что отвечает, по-видимому, боль-
шей легкости образования соответствующих σ-комплексов, которые ста-
билизируются резонансным участием трех атомов фтора, в отличие от
σ-комплексов, образующихся при атаке 2- и 4-положений. Большая лег-
кость замещения водорода, чем фтора, определяется, кроме того, веро-
ятно, различием механизмов, по которым идет ароматизация соответст-
вующих σ-комплексов68. По тем же причинам, что и в C6F5H, в C6F5CF,
наиболее реакционным является положение 3. Дополнительное пониже-
ние реакционной способности положения 2 связывают со стерическими
•факторами, а относительно большую реакционность положения 3 по
сравнению с 4 — с наличием в первом случае трех, а во втором — двух
атомов фтора, участвующих в стабилизации образующихся σ-комплек-
сов 68.

На схеме приведены парциальные факторы скорости атаки в различ-
ные положения C6F6X, определенные при сочетании состава продуктов
реакций и относительных констант скоростей, полученных из конкурент-
ных экспериментов с эквимолярными количествами C6F6 и C6F5X

68.

Η 1,6

( F )

0,6

0,9

Вг 0,45

( F )

1,3

1,5

CF3

φ
1.8

1,2

0,0

|O,2

'2,7

Приведенные относительные скорости арилирования полифтораромати-
ческих соединений отличаются от полученных ранее из конкурентных
реакций каждого из субстратов с бензолом (например, kCeFbBT/kCeFc=
= 1,0) ". Это несоответствие определяется, по-видимому, тем, что при ис-
пользовании в качестве стандарта бензола отличаются замещаемые ато-
мы и механизмы их замещения, а кроме того, возможно образование
комплексе^ между компонентами смеси 7 i. По этой причине более надеж-
ными кажутся результаты, полученные из конкурентных реакций с

Мы уже говорили о том, что высокую реакционную способность мета-
положения во всех соединениях C6F5X можно объяснить образованием
σ-комплекса, имеющего три атома фтора, способных участвовать в дело-
кализации. Однако атака в самом гексафторбензоле также включает
образование σ-комплекса с тремя стабилизирующими атомами фтора,
тем не менее парциальные факторы скорости атаки в мета-положение
для всех субстратов оказываются больше единицы. Такую явно аномаль-
ную активацию мета-положения считают результатом образования ком-
плексов различной стабильности между предшественником фенильного
радикала и полифторароматическим субстратом68.

На примере реакций C6F5H с фенильным радикалом была продемон-
стрирована большая легкость замещения атома водорода по сравнению
с атомом фтора 68. Аналогичные результаты получены для некоторых
других замещенных полифторароматических соединений, содержащих в
молекуле одновременно атомы фтора и атомы водорода. Так например,
взаимодействие 1,2,4,5-тетрафторбензола 72 и 2,3,4,5,6-пентафторбифени-
ла 73 с пентафторфенильным радикалом, генерированным из C6F5I при
фотолизе или термическом разложении, приводит к образованию с высо-
кими выходами только продуктов замещения атомов водорода: соответ-
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ственно 2,2', 3,3', 4,5,5', 6,6'-нонафторбифенила и трех изомерных дека-
фтортерфенилов (о-14%, м-49,7% и «-36,3%).

Для того, чтобы оценить влияние атомов фтора на реакционную
способность полифторароматических соединений в радикальных реак-
циях, следует сопоставить приведенные данные по взаимодействию
гексафторбензола и октафторнафталина с перекисями бензоила и пента-
фторбензоила с результатами соответствующих реакций бензола и
нафталина, представленными на схеме (выходы приведены в молях на
моль перекиси):

С 5Н 5СООН

(I.3197*

с 6 н 5 с 6 н 5
0.3727 1

с 6 н 5 с 6 н 5

0 , 0 8 7 5

С6Н5СООСД,

0,0137t

C6F5COOC6F£

0 , 0 2 8 "

0,0575

0.5554

За основу качественного сравнения можно принять известные факты
увеличения выхода продуктов бензоилоксилирования по сравнению с
выходами продуктов фенилиронания в случае высокореакционных суб-
стратов 7в и образования продуктов превращения перекиси без участия
ароматического субстрата при малой реакционной способности послед-
него". Анализ всех представленных результатов с этих позиций дает
основание считать, что реакционная способность гексафторбензола и
октафторнафталина в реакциях с перекисями ароилов значительно пони-
жена по сравнению с нефторированными субстратами. Так, в реакции
гексафторбензола с перекисью бензоила отсутствуют продукты бензоил-
оксилирования (в соответствующей реакции бензола они образуются)·
и образуются значительные количества бифенила. В реакции ΟΦΗ также
наблюдается образование продуктов превращения самой перекиси бен-
зоила — бифенила и фенилбензоата, хотя и сохраняется такое же соот-
ношение процессов бензоилоксилирования и фенилирования, как в реак-
ции перекиси бензоила с нафталином.

Количественно понижение реакционной способности полифторарома-
тических соединений характеризуется относительной скоростью фенили-
рования бензола и гексафторбензола, найденной из их конкурентной
реакции с перекисью бензоила: ^C 6F 6/^C 6H 6=0,44 7 8. Причиной пониженной
реакционной способности полифторароматических соединений может
быть влияние атомов фтора как на стадии присоединения радикала
с образованием σ-комплекса, так и на стадии стабилизации σ-комплекса
путем снятия атома фтора. Ряд относительной реакционной способности
ароматических соединений по отношению к электрофильному бензоил-
окси-радикалу (С 6 Н 5 ОСН 3 >С в Н 5 СН 3 >С в Н 6 >С 6 Н 5 С1>С в Н 5 Ш 2 ) ", ···
указывает на то, что электроноакцепторные заместители в субстрате
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затрудняют бензоилоксилированке. С другой стороны, все заместители,
независимо от их электронной природы, облегчают фенилирование,
о чем говорит следующий ряд относительных скоростей фенилирования
перекисью бензоила30: С„Н6 (1); C.H.F (1,03); С6Н5С1 (1,06); C6H5NO2

(2,94); 1,3,5-С6Н3С13 (3,68). Сравнение этих двух рядов показывает, что
влияние атомов фтора в субстрате на первую стадию — присоединение
радикала с образованием σ-комплекса — должно быть противоположным
для фенильного и бензоилоксильного радикалов. Однако эксперимен-
тальные результаты свидетельствуют о том, что [реакционная способность
полифторароматических соединений понижена как по отношению к
электрофильному бензоилокси-радикалу, так и по отношению к ней-
тральному фенильному радикалу. Последнее обстоятельство может быть
вызвано стерическим экранированием реакционного центра орто-ато-
мами фтора, препятствующим атаке фенильных радикалов. Примером
влияния на реакционную способность стерического экранирования реак-
ционного центра орто-атомами фтора может служить понижение реак-
ционной способности пентафторбензальдегида по сравнению с бензаль-
дегидом в нуклеофильных реакциях, идущих по карбонильной группе81.

Влияние атомов фтора ароматических субстратов на стадию стабили-
зации радикальных σ-комплекгов отражает образование продуктов
димеризации этих σ-комплексов в реакциях гексафторбензола и окта-
фторнафталина с перекисями бензоила и пентафторбензоила. Это влия-
ние может быть связано с разницей в энергиях разрыва связей С—Η и
С—F5 5· 56, с увеличением стабильности фторированных радикальных
σ-комплексов, а также с большей устойчивостью фторированных
димеров.

Как уже отмечалось, одной из особенностей реакций полифтор-
ароматических соединений с перекисями ароилов является то, что при
взаимодействии и гексафторбензола, и октафторнафталина с перекисью
пентафторбензоила в мягких условиях (80—85°) преимущественно
образуются продукты с участием пентафторбензоилокси-радикала. Это
может быть вызвано влиянием атомов фтора на реакционную способ-
ность радикалов, которое проявляется в увеличении их электрофиль-
ности.

Курц и Пеллегрини80 показали, что бензоилокси-радикал обладает
электрофильным характером, а введение электроноакцепторных заме-
стителей в молекулу перекиси приводит к повышению электрофильности
образующихся при ее разложении бензоилокси-радикалов. Увеличение
электрофильности пентафторбензоилокси-радикала хорошо объясняется
общим индуктивным электронооттягивающим эффектом пентафтор-
фенильной группы, приближающимся к эффекту 2,4-динитрофенильного
остатка82. Отражением повышенной электрофильности пентафторбензо-
илокси-радикала является высокая степень α-замещения в реакции
нафталина с перекисью пентафторбензоила: соотношение а-: β-нафтил-
пентафторбензоатов для этой реакции равно 10: I 5 1 , тогда как для ре-
акции нафталина с перекисью бензоила — 2,7 : 1 5 4 (известно, что α-поло-
жение в нафталине наиболее реакционноспособно в электрофильных
реакциях). Большая электрофильность пентафторбензоилокси-радика-
ла по сравнению с бензоилокси-радикалом приводит, по-видимому, к его
повышенной реакционной способности при взаимодействии с ароматиче-
скими субстратами. С другой стороны, существенную роль в преимуще-
ственном образовании продуктов бензоилоксилирования может играть
высокая стационарная концентрация пентафторбензоилокси-радикалов,
которая также косвенно отражает влияние атомов фтора на реакцион-
ную способность фторированных радикалов.
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ТАБЛИЦА 9

Кинетические параметры реакций разложения перекиси Сензоила
и пентафторбензоила в бензоле и гексафторбензоле

(80°, начальная концентрация перекиси от 0,024 до
0,24 моль/л)*3

Перекись

Субстрат

Й 1 0 3 , MUH'1

Е, ккал/моль
]gA

(СаН5СОО)2

с«нв

2,9
30
16

C.F,

1,5
34
18

(C»F 5

с.н.

8,6
29
16

COO),

C 6 F,

2,5
31
17

Кинетические данные по разложению перекиси бензоила и пента-
фторбензоила в бензоле и гексафторбензоле (табл. 9) 83 показывают, что
перекись пентафторбензоила является менее устойчивой к мономоле-
кулярному термическому разложению, чем перекись бензоила, так как
константа скорости ее разложения и в бензоле, и в гексафторбензоле
выше, чем для нефторированной перекиси. Понижение устойчивости
фторированной перекиси может быть связано, например, с появлением
дополнительного кулоновского отталкивания между орто-атомами фтора
бензольных колец перекиси. Возможность существования такого поле-
вого эффекта Бломквист и Бузели и использовали для объяснения боль-
шей скорости разложения орто-замещенных симметричных перекисей по
сравнению с их мета- и пара-аналогами. С другой стороны, легкость
распада перекиси пентафторбензоила может быть результатом повышен-
ной устойчивости пентафторбензоилокси-радикала, что подтверждает
кинетика разложения перекисей бензоила и пентафторбензоила в отсут-
ствие растворителей78. Константа скорости образования СО2 для раз-
ложения перекиси бензоила выше, чем для перекиси пентафторбензоила
(36,5· 10~2 и 10,1 ·10~2 мин"1 соответственно), то есть пентафторбензоил-
окси-радикалы более устойчизы к декарбоксилированию. Причиной
повышенной устойчивости пентафторбензоилокси-радикалов может быть
более эффективная делокализация неспаренного электрона с участием
бензольного кольца. Все эти факторы, вместе взятые, могут способство-
вать созданию высокой стационарной концентрации пентафторбензоил-
окси-радикалов.

Очевидно, что пентафторфенильный радикал также обладает злектро-
фильным характером, что хорошо иллюстрируют данные по его взаимо-
действию с замещенными бензолами65· 85. Так, относительная скорость
пентафторфенилирования хлорбензола ниже, чем относительная скорость
его фенилирования (0,72 и 1,06 соответственно). Однако отношение сте-
пени замещения в орто- и пара-положения к замещению в мета-поло-
жение выше для пентафторфепилирования, чем для фенилирования:
о- +п-/м- =3,9 и 2,9 соответственно. В случае реакции пентафтор-
фенильного радикала с нитробензолом электрофильный характер ради-
кала проявляется в значительном увеличении степени замещения в мета-
положение: о- +п-1м- = 9,2 (СвН5') и о- +п-/м-=0,87 (CJY). С 1,2,4,5-
тетрафторбензолом пентафторфенильный радикал, генерированный из
пентафториодбензола при фотолизе или термическом разложении, дает
с хорошим выходом 2,2/,3,3/,4,5,5',6,6'-нонафторбифенил, реагируя по
месту наибольшей электронной плотности, что также свидетельствует об
электрофильном характере пентафторфенильного радикала 7а.

Электрофильный характер пентафторфенилыюго радикала объясняет
высокий выход бифенилов в соответствующих реакциях перекиси пента-
фторбензоила и других источников пентафторфенильного радикала с
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бензолом75 и его производными4ί· 65· 85· 86. В то же время отсутствие
в этих реакциях пентафторбензола и довольно жесткие условия, в кото-
рых пентафторфенильный радикал реагирует с гексафторбензолом, дают
основание предполагать пониженную реакционную способность этого
радикала, которую можно связать с экранированием радикального
реакционного центра орто-атомами фтора.

IV. ПРОЧИЕ РЕАКЦИИ

Гексафторбензол реагирует с быс (трифторметил)нитроксильным
радикалом, присоединяя в зависимости от условий реакции два, четыре
или шесть остатков (CF 3) 2NO 8 ' . В аналогичных условиях реакция
(CF3)2NO* с бензолом приводит к образованию только 1,2,4-тризамещен-
ного продукта88:

ON(CF 3) 2

•ON(CF3)2

О +№) 2 ΝΟ·-^(ΠΓ

ON(CF3),

+ (CF3)2NO' *

R = ON(GF3)2

Исключительно присоединение имеет место в реакциях этого радикала
с другими полифторированнымл ароматическими соединениями. Так,
пентафторпиридин присоединяет четыре (CF3)2NO-rpynnbi89, пентафтор-
хлорбензол — две, четыре или шесть, октафтортолуол — четыре, пента-
фторбензойная кислота — две, четыре или шесть, пентафторбензаль-
дегид — четыре или шесть, пентафторфенол — две или шесть, пента-
фторанилин — два, четыре или шесть остатков (CF 3) 2NO 9 0.

При взаимодействии перфтордифенилацетилена с окисью гексафтор-
диметилазота удается идентифицировать лишь декафтордибензоил
(выход 25%), хотя среди неидентифицированных продуктов реакции
присутствуют соединения, содержащие (CF3)2NO-rpynny9l.

При действии хлора на гексафторбензол °2, пентафторбензол93 или
пентафторпиридин89 при облучении наблюдается присоединение хлора
с образованием соответствующих производных циклогексана или тетра-
гидропиридина:

C 6 F 6 -\- Ci 2 —> C 6 F 6 C1 6

hv

C e F 5 H + Cl 2 - > C 6 F 5 HC1 6

Взаимодействие фторированных бензолов (1,2,3,4-C6H2F4, C6F5H и
C,Fe с е~ и 'ОН в водных растворах при пульс-радиолизе и γ-облуче-
нии94 приводит в первом случае к генерированию пентафторфенильного-



680 Л. С. Кобрина

и других фторированных радикалов с почти количественным отщепле-
нием аниона фтора: C e F e + e ~ -»-CeF5' + F-, а во втором — к присоедине-
нию "ОН с образованием σ-комплекса (XXVII):

+ 'он

(XXVII)

<т-Комплекс (XXVII) нестабилен, так как имеет атом фтора и ОН-группу
у одного атома углерода, и стабилизируется отрывом HF и образова-
нием нового радикала:

(XXVII)
-HF

По типу замещения протекает фотохимическое взаимодействие гекса-
•фторбензола с трихлорсиланом95. В результате реакции образуется в
качестве основного продукта дихлорфтор(пентафторфенил)силан
(XXIX), наряду с о-, м- и я-дизамещенными соединениями. Предпола-
гается, что образование соединения (XXIX) связано с перегруппировкой
в первоначально образующемся σ-комплексе (XXVIII) с последующей
стабилизацией нового σ-комплекса путем отрыва радикала хлора, кото-
рый инициирует реакцию:

(XXIX)

СГ + SiHCl3 -> HC1 + -SiCl3

Фотохимическая реакция гексафторбензола с триметилсиланом идет
несколько иначе, давая преимущественно триметилпентафторфенил-
силан, что указывает на стабилизацию σ-комплекса (XXX) (аналогич-
ного σ-комплексу (XXVIII)), отрывом фтор-радикала вторым триметил-
силильным радикалом95:

Si(CH3)3

J ( g | SiF(CH3)3

F

' (XXX)

He исключено также, что пентафторфенилтриметилсилан образуется в
процессе дегидрофторирования аддукта (XXXI):
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SUCH,),

-HF

(XXXI)

Облучение раствора CeF6 а циклогексане96 приводит к довольно
сложной смеси продуктов, в которой удается идентифицировать цикло-
гексилпентафторбензол, пентафторбензол, декафтордифенил и соеди-
нение с брутто-формулой C1 3H2 2F4, скорее всего являющееся дицикло-
гексилтетрафторбензолом. Природа образующихся продуктов свидетель-
ствует о том, что, по всей вероятности, имеет место свободнорадикаль-
ный процесс. При этом кажетсч очевидным, что первоначальная диссо-
циация гексафторбензола на фтор-радикал к пентафторфенильный
радикал маловероятна не только потому, что C6F6 стабилен к облучению
в отсутствие углеводородов, но и из-за высокой энергии связи С—F
в CeFe". По-видимому, процесс протекает по следующей схеме:

C eF e ^ Q F ; . CF*e + HR - C e F; + HF + R· - C,F6R;

Λν
2C6F6 -* C1 2F1 0 —> продукты высокого молекулярного веса;

C e F; + C6F, -* C 1 2 F n -* C1 SF1 O; C eF; + RH -* C,F5H -f R·; 2R" -» R t.

Механизм, включающий образование пентафторфенильного ради-
кала, постулируется для реакции CeF sI с Ni(CO) 4 " , основными продук-
тами которой при проведении реакции в диметилформамиде являются
декафтордифенил, декафторбензофенон и пентафторбензол. Пентафтор-
фенильный радикал может образоваться в результате непосредственной
реакции пентафториодбензола с тетракарбонилом никеля (при раз-
ложении комплекса [C«F5Ni(I) (СО)„]) или как продукт образующегося
вначале пентафторбензоильного радикала. Наиболее вероятной кажется
такая схема реакции:

CeF5I -*- Ni (СО)4 -» [CeF8CONi (I) (CO)nl + (3 - η) СО;

(XXXII)

(XXXII) - p f l K c o w · · » C e F ^ ; C e F s + R H ~* C ' F ' H + R " ; 2CeF"» "* С«рьС«рб··

CeFI + CO Ϊ ± QFjCO-; C,FaCO· + C,Fj

Отсутствие в продуктах реакции декафтордибензоила (дибензоил явля-
ется единственным продуктом реакции СвН51 с Ni(CO) 4

9 8) свидетель-
ствует о высокой реакционной способности C,F5CO\ который имеется
в низкой концентрации, и раньше димеризации вступает в реакцию со
средой. В аналогичной реакции с Ni(CO)4 пентафторбромбензол менее
реакционен, а гексафторбензол возвращается из реакции неизменным.

При изучении фотолиза полифторированных алкенилбензолов в газо-
вой фазе было обнаружено их превращение во фторсодержащие бенз-
циклобутены, протекающее с миграцией атома фтора из ароматического
кольца в боковую цепь. Предполагаемая схема фотохимической пере-

8 Успехи химии, № 4
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группировки включает промежуточное образование бирадикалов'

CR,=CR2CR3 F
F ^

a) R 1 = R 2 = R 3 = F ; б) R1==R2=R3=H; в) R 1 = F , R2=R3=H;

г) R1=CH3, R 2 =R 3 =H; д) R I = R 2 =H, R3=CH3.

Миграция атома фтора может протекать как 1,3-сигматропный сдвиг,
согласованный с процессом циклизации или следующий за ним, хотя
авторы" не исключают возможности протекания многократного 1,5-
сигматропного сдвига атома фтора.

Фотолиз гексафторбензола с 2,3-диметилбутеном-2 дает главным
образом соединение (XXXIII), образование которого связано, по-види-
мому, с миграцией атома фтора из кольца в боковую цепь в промежу-
точном бирадикале 10°:

с
С
IIс

сн3с

н 3 с ч

(XXXIII)

Интересна описанная недавно 1 0 1 реакция ряда замещенных поли-
фторароматических соединений с тетрафторэтиленом при высокой тем-
пературе, приводящая к образованию, главным образом перфториндана
(XXXIV). Предложенная авторами схема этой реакции включает про-
межуточное образование перфторбензильного радикала (путь генериро-
вания его в этой реакции пока не ясен):

CeF5x •C,F5CF2-
CFS=CF2 •QF S CF 2 CF 2 CF 2

-=OH, SH, OCH3, NH=

F,C=CF,

600°
G6F,CF,Br

(XXXIV)

Соединение (XXXIV) является основным продуктом и в реакциях пер-
φτορ-η-крезола и -тиокрезола с тетрафторэтиленом, что авторы связы-
вают с изомеризацией промежуточного σ-комплекса (XXXV) в σ-комп-
лекс (XXXVI) путем 1,3-сигматропного сдвига ?тома фтора и последую-
щим отщеплением из образовавшегося σ-комплекса CF3-rpynnbi:

F

(XXXIV)
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Возможность участия в этих реакциях перфторбензильного радикала
подтверждается образованием соединения (XXXIV) (выход 80%) при
совместном пиролизе тетрафторэтилена с источником CeF5CF2 — пер-
фторбензилбромидом101.
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